Viscosity Solutions to Degenerate Diffusion Problems
نویسندگان
چکیده
This paper concerns the weak solutions to a Cauchy problem in RN for a degenerate nonlinear parabolic equation. We obtain the Hölder regularity of the weak solutions to this problem.
منابع مشابه
Degenerate diffusion with a drift potential: a viscosity solutions approach
We introduce a notion of viscosity solutions for a nonlinear degenerate diffusion equation with a drift potential. We show that our notion of solutions coincide with the weak solutions defined via integration by parts. As an application of the viscosity solutions theory, we show that the free boundary uniformly converges to the equilibrium as t grows. In the case of a convex potential, an expon...
متن کاملViscosity methods giving uniqueness for martingale problems
Let E be a complete, separable metric space and A be an operator on Cb(E). We give an abstract definition of viscosity sub/supersolution of the resolvent equation λu − Au = h and show that, if the comparison principle holds, then the martingale problem for A has a unique solution. Our proofs work also under two alternative definitions of viscosity sub/supersolution which might be useful, in par...
متن کامل[hal-00327496, v1] Uniqueness results for convex Hamilton-Jacobi equations under $p>1$ growth conditions on data
Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...
متن کاملViscosity Solutions for a System of Integro-pdes and Connections to Optimal Switching and Control of Jump-diffusion Processes
We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the val...
متن کاملUniqueness results for convex Hamilton - Jacobi equations under p > 1 growth conditions on data
Unbounded stochastic control problems may lead to Hamilton-Jacobi-Bellman equations whose Hamiltonians are not always defined, especially when the diffusion term is unbounded with respect to the control. We obtain existence and uniqueness of viscosity solutions growing at most like o(1+ |x|p) at infinity for such HJB equations and more generally for degenerate parabolic equations with a superli...
متن کامل